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ABSTRACT 

A mathematical analysis of the failure of semiconductor junctions 

due to EMP induced pulses is presented.  Included in this discussion 

are: the effects of finite-size p-n junctions on maximum temperature 

build up; an evaluation of interpulse cooling;  and a determination 

of the response of these devices to damped periodic waveforms. Limita- 

tions of the results are presented.  Such information will be generally 

useful for performing preliminary damage assessment and/or screening 

of devices. 
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1.0 INTRODUCTION 

The problem of damage assessment of interface circuits by EMP- 

generated pulses is of much interest to the E-3A Program, as well as 

other aircraft systems which must satisfy EMP nuclear requirements. 

From network analysis of the interface circuits, damage assessment is 

accomplished by evaluating whether the voltage pulses which appear 

across the susceptible components will damage the latter.  References 

1 and 2 collectively provide a good discussion of the damage media-* 

nisms for various components. 

The purpose of this investigation is to discuss some analytical 

techniques which can be used for evaluating permanent damage of semi- 

conductor devices which are contained in interface circuits. The 

results are applicable to the study of failure of semiconductor junc- 
(3) tions, as originally proposed by Wunsch  .  In his model, the 

destruct mechanism is assumed to result from changes in the junction 

parameters due to the high temperatures produced locally within the 

junction area. These hot spots can be produced for both forward and 

reverse voltage conditions.  Thus, the evaluation of component suscep- 

tibility reduces to determining whether the temperature increase due 

to power dissipation is sufficient to cause damage. 

Damage assessment, therefore, depends upon the power delivered 

to a component, which in turn depends on the signal delivered to that 

component through a network of circuitry.  The complexity of the cal- 

culation can vary considerably.  Some cases are simple enough for hand 
(4) 

analysis while others require computer codes   .  Because computer 

analysis costs can be very high in a system containing a large number 

of components, the preliminary hand analysis/screening of interface 

circuits is an important step in the hardness evaluation process. An 

analytical assessment not only provides a reasonable assessment of 

circuit hardness, but also identifies those circuits requiring a more 

vigorous assessment* 
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In this study, we provide a discussion of some of the physical 

ideas and analytical concepts which are involved in hand analysis of 

component damage.  It is not unlikely that a portion of what is pre- 

sented here exists in other reports, but this information does not 

seem to have been conveniently coordinated.  Therefore, this document 

also provides the reader with a general background of the problem. 

The remainder of this report is organized as follows:  Section 

2.0 deals with the extension of Wunsch's analysis to finite size p-n 

junctions.  The subsequent section discusses various aspects pertain- 

ing to the analytical behavior of junction temperature including the 

effect of interpulse temperature cooling;  and the response of inter- 

face circuits to damped sine inputs.  Concluding remarks are rendered 

in Section 4.0. 



2.0 DERIVATION OF MAXIMUM TEMPERATURE IN P-N JUNCTION DIODE 

(3) 
Wunsch   has derived a formula for the maximum temperature rise 

in a p-n junction in an infinite medium.  The purpose of this section 

of the report is to extend the analysis to p-n junctions of finite 

size.  Using the developed equations, one can readily assess the pulse 

length conditions for which the finite size of the junction should be 

taken into account even in a hand screening analysis.. 

Figure 1 shows a pictorial representation of a p-n junction diode. 

For analysis purposes, the p and n sides are taken to be of equal 

dimension, L/2, with the junction located at L/2. 

When a voltage pulse is applied to a semiconductor device in the 

reverse direction, the principal voltage drop is across the junction. 

If we assume that the junction is infinitesimally thin, then the 

spatial distribution of volumetric heating (watts/cm3) is given by 

/  ^\  P(t) .,   L. /wattsA ,0 ,v q(x,t) = -*-*• 6(x - -) ( ) (2.1) 
cm3 

where P(t) is the time-dependent total power delivered to the device, 

A is the cross sectional area of the junction and 6(x) is the Dirac 

delta function.  The general one-dimensional heat diffusion equation 

is given by  : 

i7(pcT) - A(k Si> + q(x't} (2-2) 

where: 

p - density  ( ^ ) 
cm3 

C = specific heat  ( ^OU   ) 
gm-°K 



T = temperature (°K) 

k 
yflf f g 

thermal conductivity (   ) 
cm-°K 

x = linear dimension (cm) 

Metal 
Contact 

x=0 

L 
2 

Junction (area=A) 

L 
2 

x=L 

Figure 1.  Diagram of p-n Junction Diode 



Wunsch points out that k is a sensitive function of temperature, 

e.g., ranging from 1.56 watts/cm-°K at 300°K to 0.310 at 1000°K, so 

that strictly speaking its explicit dependence on T should be taken 

into account in Equation (2,2). However, for mathematical conveni- 

ence, we shall approximate k by a suitable time-weighted average over 
(3) the temperature range of interest  . 

Equation (2.2) will be solved subject to the boundary conditions 

T(x=0) - T 
a 

(2.3) 
T(x=L) = T 

a 

where T is the ambient temperature which may also be taken as the 

initial temperature. Without loss of generality, we arbitrarily mea- 

sure the temperature with respect to T . We, thus, make the substitu- 
SL 

tion T-+T-T so that the new boundary conditions become T(x=0) = 

T(x*L)=0. Using the aforementioned change of temperature reference, 

the solution of Equation (2.2) is obtained by using an orthogonal 

series expansion for T(x,t). We let 

T(x,t) = VBn (t) sin 2j2 
n=l 

(2.4) 

q(x,t) = Vqn (t) sin^ (2.5) 
n=*l 

where the orthogonal functions sin —:— satisfy the condition: 

L TT 

/sin   sin   dx • — / sin nu sin mu du (2.6) L      L        * J 
o o 

= —  if m • n    ;     = 0 if m ^ n 



The functions    Q  (t)    are determined from the equation: 
n 

/.     mr: slnT 
nirx     /    ^\, L «  /^\ q(x,t)   dx    =    - Q   (t) 

/    n 
(2.7) 

which using Equation  (2.1)  yields; 

Qn(t) 
2 
L 

P(t)       .     nir 
A      sinT (2.8) 

For mathematical convenience, let us call 

. nir 
sin — 

C  = 0 for n even (2.9) 

C  = ±1 for n odd 

Substituting Equations (2.4) and (2.5) into Equation (2.1) and equating 

equal coefficients of sin 
nffx 

gives: 

dB 
PC 

n 
dt 

-k (SI) *    + Q (t) 
L   n   n 

(2.10) 

Since C = 0 for n even, Equation (2.10) has meaning for odd n, a 
n 

fact we will later use in summing up the infinite series.  Dividing 

through by pC gives the following simplified version of Equation 

(2.10): 

dB 
n 

dt 
-X  B + W (t) 

n n   n 
(2.11) 



where 

xn = k(Ir>2 <2-12> n       L 

Qn(t)   2p,fs 
W  - -V- = ^^"C (2.13) 
n    pC     pCAL  n 

The initial conditions for all B are: 
n 

B (t=0)  = 0 , (2.14) 
n 

since it is assumed initially that the junction is at uniform tempera- 

ture T . The solution to Equal 

of Equation (2.14) is given by: 

ture T . The solution to Equation (2,11), subject to the condition 
a 

Xnt' Jv B (t) = e    / W (t») e    dt' (2.15) 
n 

0 

On physical grounds, it is apparent that the maximum temperature 

will occur at the junction, where x • —.  Let us define this junction 

temperature as T. We have: 

oo 00 

T(t)  = T(x=|,t)  -  ^Bn(t)sinT2r LBn(t) Cn (2'16) 

n=l n=l 
(n odd) (n odd) 

where C  is given by Equation (2.9).  Substituting Equation(2.15) 
n 

into Equation (2.16) gives: 

t 
2   f /*-  ~AnU-f)  \ T(t) = pik/p(t,)(Ze cn) dt* (2-17) 

0      ^n=l 
(n odd) 



Since according to Equation (2.9), C • ±1, it then follows 
2 n 

that C  = 1 so that the infinite summation in Equation (2,17) n 
becomes: 

where 

A v- -Mt-t') 2   ~  -*i<t-t»)n2     _an2 "  L e       Cn = E  e " X6        (2*18) 
n-1 n*»l n»l 

(n odd) (n odd) (n odd) 

Xl =  (pc) (L ) (2.19) 

\  (t-t1) (2.20) 

S is computed in the following way.  We first convert Equation 

(2.18) to an unrestricted series through the substitution: 

n - 2m + 1 (2.21) 

where the index m ranges from m=0 to m= °°.  S then becomes: 

S = £ e-(2m+l)
2 . £ e-4«(«fl/2)2 (2>22) 

m=0 m=0 

If a is always very small, as for example would be the case in 

an infinite medium for which L-*» (cf. Equation 2.19), then it is clear 

that each succeeding term in the summation will only differ a small 

amount from its predecessor.  In this case, the discrete summation can 

readily be approximated by /dm.  We have 

Lim S 
ct-*0 

j   c-4a(mfl/2>2dm .yV^dy (2.23) 
0 1/2 

8 



Making the substitution 

w2 - ^y2 (2.24) 

gives 

1   f     -w2        1   f   ~w2 Lira S «   1  e   dw •  —— / e   dw        (2,25) 
a-K)     2 Jo -/ ZsTa J 

Since 
ao 

e w dw - -r- (2.26) 

we have 

Lim  S=  =  -  —= (2.27) 
CH-0     4N/O"  4 s/k" ir v/t-t'   4 x/kiKt-t') 

Substituting Equation (2.27) into Equation (2.17) then gives: 

t       f   P(t') dt' , 1/ 1 \   / P(t') dt'   „ , 

By making the appropriate notational substitutions, and generalizing 

the results of reference 3 to the case of an arbitrary time history of 

P(t), the reader can convince himself that Equation (2.28) is exactly 

equal to the result derived by Wunsch. For example, if we assume: 

P(t) - P  : 0 < t < t (2.29) o     —  —  s 

then Equation (2.28) yields the well-known formula: 



p       1/2 

«W - f(iCc)   *1/2  » «i«it.    (») A \ irkpC - 

1/2 (2.30) 

T   - —[-r-l        t 1/2 max    A \ irkpC '     s 

Examination of Equations (2.19) and (2.20) show that In general 

a will be small whenever 

^t « 1 (2.31) 

or equivalently 

t « .  - f   (i) (2.32) 

where t, is recognized as the diffusion time.  If the pulse duration 
d 

is  t   then Equation (2.32) shows that for  t << t,  the result given 
P P   d 

by Equation (2.28) provides an accurate estimate of the junction tem- 

perature. 

On the other hand, when a becomes comparable to or greater than 

unity, the approximation of the infinite series by an integral becomes 

questionable and an alternate method must be found for evaluating 

T(t).  Fortunately, this can be done by performing a term-by-term time 

integration in Equation (2.17).  Making the substitution 

2 
X  = A. n (2.33) 
n     l 

and using Equation (2.29) for P(t)  in Equation (2.17) for illustra- 

tive purposes, we obtain: 

10 



«« - fefc x^   (x - -^x') 
n=l 

(n odd) (2.34) 

'2P„L 

(n odd) 

Theoretically speaking, Equation (2.34) is correct for all times, 

but the infinite series has poor convergence properties in the limit 

of small X^t.  On the other hand, the series will converge rapidly 

when X^t _> 1 which corresponds to the regime where t >_ tj.  In this 
C  A 

time regime, the exponential terms will decay rapidly with T(t) reach- 

ing an asymptotic value given by 

2P°L\ V- 1   Yj  — (2-35) 
»W   , n2 

n=l 
(n odd) 

From reference 6, we can deduce 

i i -1 i \ - H - T 
n=l nFl 

(n odd) 

which when substituted into Equation (2,35) yields 

Wc) • m (2-37) 

T  (t)  could have also been derived from a steady-state solution of max ' 
Equation (2.2). 

11 



It is worthwhile to mention that, for long pulse lengths, as 

defined by the condition t >> t^, a steady-state solution is meaning- 

ful. In this case, the explicit temperature dependence of the conduc- 

tivity can be taken into account in the computation, since in the p 

and n regions we deal with the equation 

0 - JL (itil) (2.38) 

This equation integrates to: 

T 

k (T') dT' = Cx (2,39) 
/ 

where C is a constant. By straightforward application of the boundary 

conditions, the spatial distribution of temperature can be determined. 

In summary, Equation (2.34) provides a means of calculating T(t) 

for all times and finite size p-n junctions. For the limiting case in 

which (t/tj) << 1, Wunsch's original result is valid.  At the other 

extreme, when (t/tj) >> 1, the asymptotic bound on T(t) should be used. 

For intermediate times, a finite number of terms from Equation (2.34) 

would probably provide an adequate approximation. 

12 
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3.0 ANALYTIC BEHAVIOR OF JUNCTION TEMPERATURE 

The purpose of this section is to discuss various analytical pro- 

perties of the time dependence of the junction temperature as a func- 

tion of power pulse shape. The results may be useful in a screening 

assessment of damage susceptibility. 

3.1 Alternate Form of Damage Criterion 

For the purposes of this discussion, we shall assume that the 

junction temperature is given by Equation (2.28). For a square wave 

pulse of power P ,  and duration t ,  the maximum temperature is 

given by Equation (2.30b).  If T  is the temperature at which damage 

occurs,  the following well-known relationship holds between T » P , 
m   o 

and t : 
s 

P  = Kt "1/2 (3.1) 
o     s 

where K is the damage constant defined by the equation 

K = A VirkpC T (3.2) 
v      m 

For this special case of a square pulse, the total energy delivered to 

the device is: 

E  = P t (3.3) 
S       OS 

which gives the equivalent relationship 

E  = Kt 1/2 (3.4) 
s     s 

13 



Using Equation (3.2), we can recast Equation (2,28) in the mathe- 

matically convenient form 

T 
T(t) = ^ G(t) (3.5) 

where 

t 

f     P(t') G(t)  =        s" [/2    dt' (3.6) 

Equations (3.5) and (3.6) provide an alternate way of evaluating 

damage.  Since damage will occur when T(t) exceeds T ,  the condi- 
m 

tion for damage to occur is obtained from the inequality 

G(t) >_ 2K (3.7) 

The foregoing expression for damage appears to be a new way of 

relating pulse shape to component susceptibility.  If G  is the 
m 

maximum value of G(t) in the interval 0 < t < t , where t is the -  - p p 

pulse duration, then damage will occur when 

f   p(f: 
1 (t-f): = max  ]    ^^ l/o    dt1 max / .       .,.1/2 

> 2K (3.8) 

Even for pulses of finite duration, it is clear that the maximum 

of G(t) need not occur at the end of the pulse interval, so that 

damage formulas which are based on total energy deposition 

t 

J     P(t') dt' 
0 

may lead to uncertainties in damage assessment. However, these uncer- 

tainties will not be very large for the commonly-assumed single cycle 

14 



waveforms (e.g., one cycle of a sine wave). For example, for a limited 

number of cases evaluated, it was found that about 75% of the pulse 

energy contributed to raising the junction temperature to its maximum 

value. 

Equation (3.6) may be useful for determining the maximum tempera- 

ture for complex waveforms, and also for more accurately assessing 

(cf. Section 3.3) the damped sine case than in reference 2.  In addi- 

tion, it provides an easy means of computing the interpulse cooling 

rate for analyses of repeated pulses (cf. Section 3.2). 

3.2 Interpulse Temperature Cooling 

The purpose of this section is to assess the temperature decrease 

between pulses. For mathematical simplicity, we consider the pulse 

train shown in Figure 2. Using the structure for P(t) shown in this 

figure, 

P(t) 

Figure 2. Power Pulse Train 

the temperature is determined from the equation: 

t 

m T(t) = 5J? G(t) = 2K J  (t-f)1/2 
dt' (3.9) 

In the range 0 _< t <_ T,  the function G(t) becomes: 

0 < t < T:   G(t)  = G-,(t)  = 2P t 
—  — J- o 

1/2 
(3.10) 

15 



while in the range T <_ t  <_ 2T, we have: 

1/2      1/2 
T < t < 2T:  G(t)  = G„(t) - 2P [t ' - (t-T) ' ]   (3.11) —  — z       o 

The function G_(t) gives the temperature response following a square 

wave power impulse function and is actually valid for all times greater 

than T. 

expansion: 

than T. For t >> T, the function G_(t) can be approximated by the 

G2(t) - 2Po[t
1/2 - t1/2(l - S)l«] 

- 2Po[t
1/2 - t1/2(l " | f " | <7»? 1 (3-12) 

T    1    T ^ 
=  (P -) + r  P (-) v o t   4 o V 

The asymptotic expansion can, of course, be directly obtained from 

Equation (3.9) by neglecting t' with respect to t in the denomina- 

tor of the integral.  For times  t long compared to the pulse width, 

and for any shape pulse,  T(t) becomes: 

«*>  " S ~V2    /Pp(t,)dt'=^^2 (3'13) 
t   *%. t 

where 

0 

t 
•P 

E  = / P(t') dt' = energy delivered in pulse.    (3.14) 
•/' 

Figure 3 shows a plot of G(t) (normalized to 2P T = 1) for the 
o 

first pulse of the pulse train;  the function G„(t)  is shown for all 

time. An interesting feature of G_(t)  is its relatively slow decay 

16 



1.0 • 

G(t)  0.5 

G1(t) 

G2(t) 

Figure 3.  Plot of G(t) for First Pulse 

2.0 • 

1.6 • 

G(t)  1.2 

0.8 

0.4 • 

G(3T)=G1(T)+G2(3T) 

—t- 

T 
—«— 
2T 

G(5T)-G1(T)+G2(3T)+G2(5T) 

3T 4T 5T 
—*T 
6T 

Figure 4.  Plot of G(t) for Three Pulses 
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with time.  This is a reflection of Wunsch's physical model which 

limits the amount of cooling for an infinite system. 

The function G(t) at times t = (2n+l)T is given by 

n 

G[(2n+1)T] = GX(T) +   J^ G2  K2n'+1>T! (3-15> 
n'«=l 

Figure 4 shows a plot of G(t)  for three pulses. For large n,  the 

function G.(t) can be approximated by the first term in Equation 

(3.12) with the normalization P T • 1/2.  Thus, for large n we have: 

G2[(2n+1)T]  = I^S^ = Y^l)- <3'16> 

which shows that the series of Equation (3.15) is logarithmically diver- 

gent.  The upshot of this discussion is that it is precarious to make 

computations of damage assessment based upon one cycle of a series of 

pulses. For the Wunsch model, temperature quenching appears to be 

generally insufficient. 

The foregoing discussion is useful for analysis of exponentially 

damped periodic pulses (which includes the damped sine case). Let 

T  be the period of the oscillation, and Y the damping constant. 

The power waveform is expressed as 

P(t) = Ae"Vt W(t) (3.17) 

where W(t)  is defined as the periodic part which satisfies the 

condition 

W(t+Tc)  = W(t) (3.18) 

In order for Equation (3.17) to have any meaning, it is clear that     v. 

18 



yT << 1.  If damping is now applied to the pulse waveform in Figure 2 

(T = 2T), with yt being considered to be relatively constant between 

mT  and (m+l)T , and approximated by the value mT during the inter- 
c c 

val, the the corresponding behavior of  G(t) at the odd intervals of 

T would be: 

n 

G[(2n+1)T] = e"2nYTG1(T) + J]e 
2(n~n,)YTG2[(2n'+l)T]   (3.19) 

n'=l 

For this situation, it is not clear during what cycle the maximum 

temperature will occur. Equation (3.19) does, however, provide a means 

of readily evaluating T[(2n+1)T], and thereby determining the number of 

cycles which must be incorporated into the calculation. 

3.3 Response of Interface Circuits to Damped Sine Inputs 

It has been found experimentally and shown theoretically that the 

voltage input to interface circuits is frequently of the damped sine, 

type.  Such a voltage pulse is described by the form: 

V(t)  = VQ e"
Ytsin cot (3.20) 

where in order for Equation (3.20) to have meaning we must have 

- » 1 (3.21) 

Voltages of the type given by Equation (3.20) may give rise to various 

forms of power dissipation in devices depending upon whether failure 

takes place in the forward or backward direction.  Some of the typical 

power waveforms are discussed in references 2 and 4. Figure 5 shows 

some representative power waveforms resulting from damped sine inputs. 

19 



If the interface circuit is purely resistive, then the power dis- 

sipation in a particular device will be of the periodic type, not 

unlike those shown in Figure 5.  On the other hand, if failure takes 

place in the reverse direction, the length of time for conduction will 
(2) 

be voltage dependent   and the power dissipation will not be strictly 

periodic.  For a damped sine input, we will eventually reach the con- 

dition where the reverse voltage falls below the breakdown voltage and 

conduction in the negative direction ceases. 

When inductive and capacitive effects have to be taken into 

account in the interface circuit model, it is not clear that power 

dissipation will be cyclic since the basic problem is a transient one. 

Circuit conditions in the second and subsequent cycles of the input 

voltage may be different from the first, depending on the values of 

the reactive elements. Therefore, in some cases, a time-dependent 

calculation would appear to be the only sensible method of solution. 

However, there do exist several instances where effects arising 

from non-zero initial conditions quickly dampen out, thus permitting 

analyses of each cycle separately. The following comments provide a 

discussion of damage assessment under these conditions. 

The first logical step in damage assessment is to approximate 

V(t) by 

V(t) = V sin ut (3.22) 
o 

for the first few cycles subject to the condition yt < 1.  In view 

of the fact that (OJ/Y) » 1» this time regime may include many cycles. 

If damage is found to occur in the first few cycles, it is then 

unnecessary to include the damping.  In performing such an analysis, 

it would of course be necessary to use the results of the previous 

section to account for temperature decay. 
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Figure 5. Representative Power Waveforms 

21 



However, additional insight into the problem can be found with 

use of the following observation: In the periodic response range • 

(characterized by Equation 3.22), the power P(t)  across any device 

can be cast in the form: 

oo 

P(t)    =    P +   VP    sin ntot (3.23) ave £-~   n 
n=l 

where P    is the average of P(t') and P  are the Fourier coeffi- 
ave n 

cients.  Equation (3.23) would be valid in the regime yt < 1 which, 

as previously indicated, could include the range cot > 1, If Equation 

(3.23) is inserted in the expression for G(t), we obtain: 

t 

G(t) =   f        ?(7/?  dt'  =  2P       t1/2 + VP     f Sl" "•*'     dt'     (3.24) 
1    (t"t')1/2 ^ tin{    ^-f)1/2 

Working out the details for the integration in Equation (3.24), we 

obtain: 

/safe - - (±r [ I sin ncot f.   (t)  - cos ncot f? 

(3.25) 

Vc> - \-T^jn dt' " (S      sin »* fm(t) " cos nwt f2n<'> 

where 

fln(t) 

ncot 
1        cos  X " 1     ,« 

f2»(t) 

ncot 
C      sin X 

dX 

(3.26) 

dX 

As per the previous discussion, the foregoing set of equations 

are of interest in the time regime encompassing many cycles, but not 
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long enough to Include damping.  In the regime where tot » 1 (e.g., 

u)t=13 for 2 cycles), It can be shown   that 

nut nut 
/   sin X 

J       x1/2 o   A 
dX •« f     cos x 

J       x1/2 o   A 

in which case I (t) 
n 

becomes: 

v/f 

1/2 
In(t) = Jl (i)      tsin nU)t - COS nUt^   =\/nf l>in (nwt " 4}3 (3-28) 

Substituting Equation  (3.28)   into Equation  (3.24)  yields; 

_ 

G(t) - 2Pav/'
2 [l + JJ (^"\^ *in(n*t - |) 

n=l ^ 

(3.29) 

The important feature of Equation (3.29) is the relative decrease 

in the contribution from harmonics  as tat    becomes large.  It is also 

evident that the dominant contribution to temperature increase comes 

from the average power contribution. Neglecting the harmonic terms 

gives: 

1/2 
G(t) = 2P   t /z (3.30) 

ave 

which is the response to a square wave pulse of power P  .  If 

1/2 
2P   t '  < 2K (3.31) 

ave     — 

over many cycles, then damage must be assessed using the exponential 

decay factor. For cyclic responses, the power dissipation will be 
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* 
given by the form: 

OS 

P(t) = e"Yt /Pave + ^  Pn 
sin ntot) = e_Yt *<*>        (3.32) 

where P(t) is given by Equation (3.23) Based on the analysis of the 

undamped case, we assume, without rigorous proof, that for times long 

enough so that damping becomes important, the dominant contribution to 

G(t) will result from the first term in Equation (3.32), namely, 

P(t) = e~Yt P (3.33) ave 

Using the Equation (3.33), the expression for G(t) becomes: 

t 

I    (t-t'): 
G
<C> = Pave / TT^ITI dt' (3'34) 

Making the substitution 

x = Yt , x' = Yt' (3.35) 

then yields 

x       ? 
/"x 

(x-x')1' 

P 

~i72   /   ~—171 

Now letting 

V     =    x'/x (3.37) 

Depending on the relationship between the device voltage and the input 
voltage, the power damping rate for the device may be either Y °r 
2Y-  For the purposes of this discussion, we use y. 
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gives: 

1/2    C     e"yX 

G(t> = W       J  7^172    dy <3'38> 

1 

-x/(l-V Pavet
1/2 2[1 - x / (l-y)1/2 e"yx c 

"0 

2P    , /9 2P 
—f/f x '  [l-x*(x)] = —12|  ,p(x) (3.40) 

where 

1 

(l-u)1/2 e"yx -/ d-w: 
0 

1/2 
ij,(x) = x" [1  - x<|>(x) ] (3.42) 

Figure 6 shows a plot of <j>(x) vs. x. For small values of x, 

4>(x) is approximated as: 

1 

4>(x) = J   (l-y)1/2 dv    - | (3.43) 

which gives for  x = yt < 1 ; 

2P 
G(t) " ~~l/f <^t)1/2[l - f(Yt)j = 2Pavet

1/2[l - | (Yt)] (3.44) 
Y 

On the other hand, for large values of x the e    term in the 

integrand will be the controlling factor in the integration.  In the 
—ux 

region where e    is non-negligible u will be very small compared 

to unity and <j> will be approximately given by: 
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1 

/ 
e"yX dy - ^(1 - e~x) (3.45) 

Substituting Equation (3.45) in Equation (3.40) gives for Yt > 1, 

2P 2P n/+\  _  ave  1/2M ,..  -x. .    ave ..1/2 -x ., ... 
—111             [1-U-e )] - —1/2 x   e (3.46) 
Y                    Y 

Figure 7 shows a plot of the function i|>(x) > which is propor- 

tional to G.  As observed, ij'(x) reaches its maximum at the point 

xcl (3.47) 

or equivalently at time 

t»- (3.48) 

The maximum value of i|>(x) is 0.55 which then gives 

2P        1/0  1.5P „     ave , C1-N1/2     ave ,~ /a^ Gmax " -TFT (>55)  = -TIT- (3'49) 
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» 

4.0 CONCLUSION 

In this report, we have developed several analytical techniques 

which can be used for evaluating permanent damage of semiconductor 

devices which are contained in Interface circuits. These techniques 

are intended for use in a hand analysis and/or the screening phase of 

hardness evaluation. 

Included in this discussion are: the effects of finite size p-n 

junctions on maximum temperature buildup; an evaluation of inter- 

pulse cooling;  and a determination of the response of these devices 

to damped periodic waveforms. Limitations of the results are presen- 

ted. 
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